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A characterization is given of those subspaces of L p space whose metric projection
is linear, and of L l' which is finitely codimensionaL whose metric projectior, admits
a linear selection. £' 1991 Academic Press. Inc.

1. I0ITRODUCTIO;-';

Let X be a normed linear space and Y a non-empty subset of X. The
metric projection (or nearest point mapping P y: X --> 2 Y is a set mapping
to be defined by Py(x)= {YE Y; lix- yl! =d(x, Y)} for any XEX, where
d(x, Y) = inf{ Ilx - gil; g E Y}. The subset Y is caned proximinal if
P y(x) # 0 for each x E X. It is well known that it is proximina! for any
closed convex subset of a uniformly convex Banach space. A selection for
Pyis a mapping s:X--> Ysuch that S(X)EPy(X) for each XEX. If Yis a
subspace, a linear selection for P y is a selection with the additional
property of being linear. The kernel of a metric projection P y onto a
proximinal subspace Y is the set ker P y= {x E X; 0 E P y(x)}.

F. Deutsch [3] has shown that, for a proximinal subspace Y, P y has a
linear selection if and only if ker P y contains a closed subspace l'i such that
X=Y+N.

Pei-Kee Lin [6] has proved that, for a finite dimensional subspace Yof
Lp (1 < P < ex., and p # 2), P y admits a linear selection if and only if there
exist k disjoint subsets B 1 , B 2 , ... , B k , everyone of which is the ur..ion of
some atoms of T, such that Y=(EBYJ p , where Y i is either Lp(B;) or a
hyperplane of Lp(BJ

In Section 2, we study the linear metric projection on L p (T). For any
closed subspace of Lp(T, 2:, /1), which /1 is a purely atomic measure, Vie

prove that P y is linear if and only if there exists a disjoint subset collection
{A;,LEA of T such that Y= (W;'d Y;,)p, where Y;. is either Lp(AJ or a
hyperplane of Lp(A;).
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In Section 3, we consider the space L 1(T, 2:, fl) of integrable functions on
the finite measure space (T, 2:, fl). For an n-codimensional subspace Yof
L l' we prove that P y has a linear selection P such that PI T = 0, where
1T(t) = 1, if and only if there exist 11 disjoint subsets B i E 2:, i = 1, 2, ..., n,
such that Y= {xEL 1 ; JAj xdJ1=O, i= 1, 2, ..., n}.

2. LI!'IEAR SELECTIO:\[S IN L p (1 < p < v:; A"'D P =I 2 )

Let (T, 2:, J1) be a measure space. An atom A is a measurable set such
that J1( A) <x and, if B is a measurable subset of A, then it has either
fl(A) = fl(B) or J1(B) = 0. Hence, any measurable function is constant a.e.
(p) on an atom, and we can assume that every atom contains only one
point. For xELp, the supported subset of x is defined (up to a set of
measure zero) by supp(x) = {tET;x(t)=lO}.

We shall use the following theorem. The proof is similar to that in [2].

THEOREM 2.1. Let (T, 2:, J1) be a measure space, J1 a purely atomic
measure, and P a contractive projection on X. Then there exists a vector
family {Yi L. E A of norm 1 with the disjoint supported subsets in X such that:
For each XEX, P(X)=L;.EA y!(y;.), where y! is the peakfimctional of Yi
for each ;. E A.

Using this theorem, we can show the following theorem.

THEOREM 2.2. Let (T, 2:, J1) be a purely atomic measure space and Y a
closed subspace of L p (1 <P<x, p=l2). Then the following statements are
equivalent,

(a) P y is linear.

(b) There exists a disjoint subset family {A i. L. E A of T such that
Y;= [EB i.EA MiJ p, where M;. is either Lp(AJ or a hyperplane of Lp(A;J for
any AE A.

Proof (a)=>(b). Let P=P y and Q=id-P. It is obvious that Q is a
contractive projection operator. By Theorem 2.1, there exists a vector
family {J';L.EAO of norm 1 in L p in which the supported subsets supp(yJ
of Yi. are disjoint such that, for each x E L p ,

QX= " l'~(x)'Y"L... 0/ /. /.'

;.E Ao

(2.1 )

where y! is the peak functional of y;. for each AE A o. We can assume that
Of/:A o· Let A = {a} u {l-EA o; card[supp(yJJ ;?:2}. Since for any xELp
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and Ixli = 1 the peak functional f of x is ixl p- i sgn(x), we get supp(f) =
supp(x). So yfELq(supp(yJ) for any i.EA. Let .1 0 = r.U;.EAoSUPP(yJ
and .1i-=supp(yJ J.EA\{O}. Let Jlo=Lp(A o) and Mi. = {xELp(AJ:
yj(x)=O} i.EA\{O}. Then M;. is a hyperplane ()f L,,(A;) for each
i.EA\{O). For any xELp, let xi.=xl o4 ; (=x(t), tEA;; and =0, t¢AJ for
each i. E A. Then x = Li-EA Xi' By (2.1),

Qx = ~ ). *(x 'J . v"L ..... , /. ~ /.
! j j \
,,,-,,.:.-!

If x E Y, then Qx = O. By (2.2), we get y t(x;) = O. If supp(yJ is a singleton,
let supp(y;)= {to}. Since yt(t)=x;.(t)=O when t=/=to, we have Xi.\tO) =0
by 0 = yt(x;) = J1(to) . yt(to) . X;lto) and p(to) =/= 0, yt =/= O. Hence
x = L;EAX;.. By yt(x;) = 0, we get x E CEB;E.1A-f i]p, that is.
YS:;:[EBiEAMiJp' If X=Li.EAXi and XiEM;, by (2.2) we get Qx=O.
Hence x E Y, i.e., [EB i.E ,1 MiJ ps:;: Y.

The (b) => (a) is the following theorems. I

THEOREM 2.3 (F. Deutsch [3]). Let Y be a proximinal hyperplane of a
Banach space X. Then P y admits a linear selection.

THEOREM 2.4 (Pei-Kee Lin [6J). Suppose M i is a proximinal subspace
of X" P,\f, has a linear selection Si' Then itf = (EB A·()p (1::::; p < x) is (1

proximinal subspace of X = (EB XJ p ' Jloreorer, PH has a linear selection

EB Si'

3. THE LINEAR SELECTIO~ 1" L [

In this section, we consider the linear selections in L [ space. We will need
to use the following theorems.

THEORBf 3.1 (R. G. Douglas [5]). Let (T, E, fl) be a finite measure
space and P a contractire projection on L[IT) and Pl r = IT, \rherE

1T(t) = 1 for any t E T. Let Eo = {supp f; f E R(P)}. Then Eo is a (J-subring
of E and Pf = 0 if and only if Jo4 f dJ1 = 0 for each A E Eo·

Using this theorem, we can get the following theorem.

THEOREM 3.2. Let (T, E, J1) be a finite measure space and Y an
n-codimensional proximinal subspace of L[ (T). Then the following statements
are equiralent

(1) P y admits a linear selection P such that PI r = O.
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(2) There exist measurable subsets AI, A 2 , ... , An such that

(a) Ai fI Aj = 0 (i # j) and UZ~ I A k = T.

(b) Y= {IE LI{T); SA,!d/l = 0, i= 1, 2, ..., n}.

Proof It is evident that if Y has the form in (b), then codim Y = n.

(1) => (2). Let Q= id - P. Then Q is a contractive projection on L I

and Q1 T=l T. Let L o= {suppx; xER(Q)}. By Theorem 3.1,

Y = {f ELI;Lf d/l = °for each A E L 0 } .

Let AI, A 2 , ... , Am be all atoms in Lo. Since R(Q) is separable (finite
dimension), the subset To=u{suppx; xER(Q)} is measurable. Let
D = To\U;;'~ I A k • Suppose /leD) > 0. Since D does not contain any atoms;
there exist disjoint B I, B 2 , ... , Bn+ I such that °< /l(Bi)~ /l(D)j(n + 1) and
BiELo. Hence there exist YiER(Q) such that supp(Yi)=Bi. It is obvious
that Yt, Y2, ... , Yn + I are linear independent. So dim R( Q) > n. It is in
contradiction with the codim Y = n. So we get To = U;;'~ I Ai and
Lo= {AI' A 2 , ... , Am}. By (3.1), we get that Y has the form of (b) and
m = n. If /l(T\To)> 0, let f be the characteristic function. Then f # 0. But

11 T- fll = r f d/l = /l(To)< p(T) = 111 Til·
• To

This is in contradiction with the PI T= 0. So we can assume that T = To
(up to a set of measure zero). Hence (a) holds.

(2) => ( 1). Let x i be the characteristic function of A i and Yi = xii/l( Ai)'
For any x E L[, let /;(x) = L, x dp. Then /;E Lt, 1.1:·1 = 1, and /;(yJ = c5ij'
where c5ij is the Kronecker symbol. Since Aifl Aj = 0 and T= UZ~ I Ak> for
any xEL I, X=2:Z=1 (XiX). Let XO=2:Z~1 [xix- .I:(xix)yJ. It is obvious
that fi(XO) = 0. So XoE Y. For any Y E Y, by fi(X i y) = /;(y) = 0,

n n

Ix-xoll = I 11/;(xix)Yill = I Ifi(xix)1
k~1 k~1

n

= I Ifi(.X"ix-xiy)1 ~ I jlxix-xiyl = Ilx- yll·
k~1 k~1

So XoE PyX. Let Px = Xo' It is evident that P is a linear selection of P y.
We need only prove PIT=O. By definition, P1T=LZ~1 [xi-f;(xi)yJ.
Since fi(X;)Yi=P(A;)Yi=X i, P1 T=0. I
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