The Linear Selections of Metric Projections in the L_p Spaces

SONG WENHUA

Institute of Applied Mathematics. Dalian University of Technology, Dalian 116024, People's Republic of China

Communicated by Frank Deutsch

Received April 25, 1990; revised August 2, 1990

A characterization is given of those subspaces of L_p space whose metric projection is linear, and of L_1 , which is finitely codimensional, whose metric projection admits a linear selection. © 1991 Academic Press, Inc.

1. INTRODUCTION

Let X be a normed linear space and Y a non-empty subset of X. The metric projection (or nearest point mapping $P_Y: X \to 2^Y$ is a set mapping to be defined by $P_Y(x) = \{y \in Y; ||x - y|| = d(x, Y)\}$ for any $x \in X$, where $d(x, Y) = \inf\{||x - g||; g \in Y\}$. The subset Y is called proximinal if $P_Y(x) \neq \emptyset$ for each $x \in X$. It is well known that it is proximinal for any closed convex subset of a uniformly convex Banach space. A selection for P_Y is a mapping $s: X \to Y$ such that $s(x) \in P_Y(x)$ for each $x \in X$. If Y is a subspace, a linear selection for P_Y is a selection with the additional property of being linear. The kernel of a metric projection P_Y onto a proximinal subspace Y is the set ker $P_Y = \{x \in X; 0 \in P_Y(x)\}$.

F. Deutsch [3] has shown that, for a proximinal subspace Y, P_Y has a linear selection if and only if ker P_Y contains a closed subspace N such that X = Y + N.

Pei-Kee Lin [6] has proved that, for a finite dimensional subspace Y of L_p ($1 and <math>p \neq 2$), P_Y admits a linear selection if and only if there exist k disjoint subsets B_1 , B_2 , ..., B_k , every one of which is the union of some atoms of T, such that $Y = (\bigoplus Y_i)_p$, where Y_i is either $L_p(B_i)$ or a hyperplane of $L_p(B_i)$.

In Section 2, we study the linear metric projection on $L_{\rho}(T)$. For any closed subspace of $L_{\rho}(T, \Sigma, \mu)$, which μ is a purely atomic measure, we prove that P_{Y} is linear if and only if there exists a disjoint subset collection $\{A_{\lambda}\}_{\lambda \in A}$ of T such that $Y = (\bigoplus_{\lambda \in A} Y_{\lambda})_{\rho}$, where Y_{λ} is either $L_{\rho}(A_{\lambda})$ or a hyperplane of $L_{\rho}(A_{\lambda})$.

SONG WENHUA

In Section 3, we consider the space $L_1(T, \Sigma, \mu)$ of integrable functions on the finite measure space (T, Σ, μ) . For an *n*-codimensional subspace Y of L_1 , we prove that P_Y has a linear selection P such that $P1_T = 0$, where $1_T(t) = 1$, if and only if there exist n disjoint subsets $B_i \in \Sigma$, i = 1, 2, ..., n, such that $Y = \{x \in L_1; \int_{A_i} x d\mu = 0, i = 1, 2, ..., n\}$.

2. LINEAR SELECTIONS IN L_p ($1 and <math>p \neq 2$)

Let (T, Σ, μ) be a measure space. An atom A is a measurable set such that $\mu(A) < \infty$ and, if B is a measurable subset of A, then it has either $\mu(A) = \mu(B)$ or $\mu(B) = 0$. Hence, any measurable function is constant a.e. (μ) on an atom, and we can assume that every atom contains only one point. For $x \in L_p$, the supported subset of x is defined (up to a set of measure zero) by $\sup(x) = \{t \in T; x(t) \neq 0\}$.

We shall use the following theorem. The proof is similar to that in [2].

THEOREM 2.1. Let (T, Σ, μ) be a measure space, μ a purely atomic measure, and P a contractive projection on X. Then there exists a vector family $\{y_{\lambda}\}_{\lambda \in A}$ of norm 1 with the disjoint supported subsets in X such that: For each $x \in X$, $P(x) = \sum_{\lambda \in A} y_{\lambda}^{*}(y_{\lambda})$, where y_{λ}^{*} is the peak functional of y_{λ} for each $\lambda \in A$.

Using this theorem, we can show the following theorem.

THEOREM 2.2. Let (T, Σ, μ) be a purely atomic measure space and Y a closed subspace of L_p (1 . Then the following statements are equivalent,

(a) P_{Y} is linear.

(b) There exists a disjoint subset family $\{A_{\lambda}\}_{\lambda \in \Lambda}$ of T such that $Y = [\bigoplus_{\lambda \in \Lambda} M_{\lambda}]_p$, where M_{λ} is either $L_p(A_{\lambda})$ or a hyperplane of $L_p(A_{\lambda})$ for any $\lambda \in \Lambda$.

Proof. (a) \Rightarrow (b). Let $P = P_Y$ and Q = id - P. It is obvious that Q is a contractive projection operator. By Theorem 2.1, there exists a vector family $\{y_{\lambda}\}_{\lambda \in A_0}$ of norm 1 in L_p in which the supported subsets supp (y_{λ}) of y_{λ} are disjoint such that, for each $x \in L_p$,

$$Qx = \sum_{\lambda \in A_0} y_{\lambda}^*(x) \cdot y_{\lambda}, \qquad (2.1)$$

where y_{λ}^* is the peak functional of y_{λ} for each $\lambda \in \Lambda_0$. We can assume that $0 \notin \Lambda_0$. Let $\Lambda = \{0\} \cup \{\lambda \in \Lambda_0; \operatorname{card}[\operatorname{supp}(y_{\lambda})] \ge 2\}$. Since for any $x \in L_p$

and |x|| = 1 the peak functional f of x is $|x|^{p-1} \operatorname{sgn}(x)$, we get $\operatorname{supp}(f) = \operatorname{supp}(x)$. So $y_{\lambda}^* \in L_q(\operatorname{supp}(y_{\lambda}))$ for any $\lambda \in A$. Let $A_0 = T \setminus \bigcup_{\lambda \in A_0} \operatorname{supp}(y_{\lambda})$ and $A_{\lambda} = \operatorname{supp}(y_{\lambda}) \ \lambda \in A \setminus \{0\}$. Let $M_0 = L_p(A_0)$ and $M_{\lambda} = \{x \in L_p(A_{\lambda}); y_{\lambda}^*(x) = 0\}$ $\lambda \in A \setminus \{0\}$. Then M_{λ} is a hyperplane of $L_p(A_{\lambda})$ for each $\lambda \in A \setminus \{0\}$. For any $x \in L_p$, let $x_{\lambda} = x|_{A_{\lambda}} (=x(t), t \in A_{\lambda}; \text{ and } =0, t \notin A_{\lambda})$ for each $\lambda \in A$. Then $x = \sum_{\lambda \in A} x_{\lambda}$. By (2.1),

$$Qx = \sum_{\lambda \in A_0} y_{\lambda}^*(x_{\lambda}) \cdot y_{\lambda}.$$
 (2.2)

If $x \in Y$, then Qx = 0. By (2.2), we get $y_{\lambda}^*(x_{\lambda}) = 0$. If $\operatorname{supp}(y_{\lambda})$ is a singleton, let $\operatorname{supp}(y_{\lambda}) = \{t_0\}$. Since $y_{\lambda}^*(t) = x_{\lambda}(t) = 0$ when $t \neq t_0$, we have $x_{\lambda}(t_0) = 0$ by $0 = y_{\lambda}^*(x_{\lambda}) = \mu(t_0) \cdot y_{\lambda}^*(t_0) \cdot x_{\lambda}(t_0)$ and $\mu(t_0) \neq 0$, $y_{\lambda}^* \neq 0$. Hence $x = \sum_{\lambda \in A} x_{\lambda}$. By $y_{\lambda}^*(x_{\lambda}) = 0$, we get $x \in [\bigoplus_{\lambda \in A} M_{\lambda}]_p$, that is. $Y \subseteq [\bigoplus_{\lambda \in A} M_{\lambda}]_p$. If $x = \sum_{\lambda \in A} x_{\lambda}$ and $x_{\lambda} \in M_{\lambda}$, by (2.2) we get Qx = 0. Hence $x \in Y$, i.e., $[\bigoplus_{\lambda \in A} M_{\lambda}]_p \subseteq Y$.

The $(b) \Rightarrow (a)$ is the following theorems.

THEOREM 2.3 (F. Deutsch [3]). Let Y be a proximinal hyperplane of a Banach space X. Then P_Y admits a linear selection.

THEOREM 2.4 (Pei-Kee Lin [6]). Suppose M_i is a proximinal subspace of X_i , P_{M_i} has a linear selection s_i . Then $M = (\bigoplus M_i)_p$ $(1 \le p < \infty)$ is a proximinal subspace of $X = (\bigoplus X_i)_p$. Moreover, P_M has a linear selection $\bigoplus s_i$.

3. The Linear Selection in L_1

In this section, we consider the linear selections in L_1 space. We will need to use the following theorems.

THEOREM 3.1 (R. G. Douglas [5]). Let (T, Σ, μ) be a finite measure space and P a contractive projection on $L_1(T)$ and $P1_T = 1_T$, where $1_T(t) = 1$ for any $t \in T$. Let $\Sigma_0 = \{ \text{supp } f; f \in R(P) \}$. Then Σ_0 is a σ -subring of Σ and Pf = 0 if and only if $\int_A f d\mu = 0$ for each $A \in \Sigma_0$.

Using this theorem, we can get the following theorem.

THEOREM 3.2. Let (T, Σ, μ) be a finite measure space and Y an *n*-codimensional proximinal subspace of $L_1(T)$. Then the following statements are equivalent

(1) P_{Y} admits a linear selection P such that $P1_{T} = 0$.

SONG WENHUA

- (2) There exist measurable subsets $A_1, A_2, ..., A_n$ such that
 - (a) $A_i \cap A_j = \emptyset$ $(i \neq j)$ and $\bigcup_{k=1}^n A_k = T$.
 - (b) $Y = \{ f \in L_1(T); \int_{A_i} f d\mu = 0, i = 1, 2, ..., n \}.$

Proof. It is evident that if Y has the form in (b), then codim Y = n.

(1) \Rightarrow (2). Let Q = id - P. Then Q is a contractive projection on L_1 and $Q1_T = 1_T$. Let $\Sigma_0 = \{ \text{supp } x; x \in R(Q) \}$. By Theorem 3.1,

$$Y = \left\{ f \in L_1; \int_A f \, d\mu = 0 \text{ for each } A \in \Sigma_0 \right\}.$$
(3.1)

Let $A_1, A_2, ..., A_m$ be all atoms in Σ_0 . Since R(Q) is separable (finite dimension), the subset $T_0 = \bigcup \{ \sup p x; x \in R(Q) \}$ is measurable. Let $D = T_0 \setminus \bigcup_{k=1}^m A_k$. Suppose $\mu(D) > 0$. Since D does not contain any atoms, there exist disjoint $B_1, B_2, ..., B_{n+1}$ such that $0 < \mu(B_i) \leq \mu(D)/(n+1)$ and $B_i \in \Sigma_0$. Hence there exist $y_i \in R(Q)$ such that $\sup(y_i) = B_i$. It is obvious that $y_1, y_2, ..., y_{n+1}$ are linear independent. So dim R(Q) > n. It is in contradiction with the codim Y = n. So we get $T_0 = \bigcup_{k=1}^m A_i$ and $\Sigma_0 = \{A_1, A_2, ..., A_m\}$. By (3.1), we get that Y has the form of (b) and m = n. If $\mu(T \setminus T_0) > 0$, let f be the characteristic function. Then $f \neq 0$. But

$$|1_T - f|| = \int_{T_0} f d\mu = \mu(T_0) < \mu(T) = ||1_T||.$$

This is in contradiction with the $P1_T = 0$. So we can assume that $T = T_0$ (up to a set of measure zero). Hence (a) holds.

(2) \Rightarrow (1). Let x_i be the characteristic function of A_i and $y_i = x_i/\mu(A_i)$. For any $x \in L_1$, let $f_i(x) = \int_{A_i} x \, d\mu$. Then $f_i \in L_1^*$, $|f_i| = 1$, and $f_i(y_j) = \delta_{ij}$, where δ_{ij} is the Kronecker symbol. Since $A_i \cap A_j = \emptyset$ and $T = \bigcup_{k=1}^n A_k$, for any $x \in L_1$, $x = \sum_{k=1}^n (x_i x)$. Let $x_0 = \sum_{k=1}^n [x_i x - f_i(x_i x) y_i]$. It is obvious that $f_i(x_0) = 0$. So $x_0 \in Y$. For any $y \in Y$, by $f_i(x_i y) = f_i(y) = 0$,

$$\begin{aligned} \|x - x_0\| &= \sum_{k=1}^n \|f_i(x_i x) y_i\| = \sum_{k=1}^n |f_i(x_i x)| \\ &= \sum_{k=1}^n |f_i(x_i x - x_i y)| \leq \sum_{k=1}^n \|x_i x - x_i y\| = \|x - y\|. \end{aligned}$$

So $x_0 \in P_Y x$. Let $Px = x_0$. It is evident that P is a linear selection of P_Y . We need only prove $P1_T = 0$. By definition, $P1_T = \sum_{k=1}^n [x_i - f_i(x_i) y_i]$. Since $f_i(x_i) y_i = \mu(A_i) y_i = x_i$, $P1_T = 0$.

References

- 1. J. LINDENSTRAUSS AND L. TZAFRIRI, "Classical Banach Spaces," Springer-Verlag, New York, 1977.
- 2. H. E. LACEY. "The Isometric Theory of Classical Banach Spaces." Springer-Verlag, Berlin Heidelberg New York, 1974.
- 3. F. DEUTSCH, Linear selections for the metric projections, J. Funct. Anal. 49 (1982), 269-292.
- 4. F. DEUTSCH, When does the metric projection admit a linear selection? Canad. Math. Soc. Confer. Proc. 3 (1983), 135-141.
- 5. R. G. DOUGLAS, Contractive projections on an L_1 -space, *Pacific J. Math.* 15 (1965), 443-462.
- 6. PEI-KEE LIN, Remarks on linear selections for the metric projections. J. Approx. Theory 43 (1985), 64-74.