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A characterization is given of those subspaces of L, space whose metric projection
is linear, and of L, which is finitely codimensional. whose metric projection admits

a linear selection. ¢ 1991 Academic Press. Inc.

1. INTRODUCTION

Let X be a normed linear space and Y a non-empty subset of X. The
metric projection (or nearest point mapping P,: X — 27 is a set mapping
to be defined by Py(x)={yeY; [x— y| =d(x, ¥}} for any xe X, where
dx, Yy=inf{|x—gl; geY}. The subset Y is called proximinal i
Py(x)# I for each xe X. It is well known that it is proximinal for any
ciosed convex subset of a uniformly convex Banach space. A selection for
P, is a mapping s: X — Y such that s{x)e P, (x) for each xeX. If Y is a
subspace, a linear selection for P, is a selection with the additional
property of being linear. The kernel of a metric projection P, onts a
proximinal subspace Y is the set ker P, = {xe X;0e P,{x)}.

F. Deutsch [3] has shown that, for a proximinal subspace ¥, P, has a
linear selection if and only if ker P, contains a closed subspace N such that
X=Y+N.

Pei-Kee Lin [6] has proved that, for a finite dimensional subspace ¥ of
L,{l<p<oc and p+#2), Py admits a linear selection if and only if there
exist k disjoint subsets B, B., .., B,, every one of which is the union of
some atoms of 7, such that Y=(@Y,),, where Y, is either L, (B;) or 2
hyperplane of L,(B,).

In Section 2, we study the linear metric projection on L,{7'). For any
closed subspace of L, (T, X, u), which u is a purely atomic measure, we
prove that P, is linear if and only if there exists a disjoint subset collection
{A4,},c4 of Tsuch that Y=(@,.,Y,),, where Y, is either L {4,) or a
hyperplane of L,(A4,).
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In Section 3, we consider the space L (T, X, u) of integrable functions on
the finite measure space (7, 2, u). For an s#-codimensional subspace Y of
L,, we prove that P, has a linear selection P such that P1,=0, where
1,(r)=1, if and only if there exist n disjoint subsets B, X, i=1, 2, .., n,
such that ¥Y={xeL,; [, xdu=0, i=1,2,..,n}.

2. LINEAR SELECTIONS IN L, (I < p<oc AND p#2)

Let (7, 2, u) be a measure space. An atom A is a measurable set such
that u(4) < and, if B is a measurable subset of 4, then it has either
iw(A)=u(B) or u(B)=0. Hence, any measurable function is constant a.c.
(¢) on an atom, and we can assume that every atom contains only one
point. For xe L,, the supported subset of x is defined (up to a set of
measure zero) by supp(x) = {re T; x(1)#0}.

We shall use the following theorem. The proof is similar to that in [2].

THEOREM 2.1. Let (T,Z, 1) be a measure space, | a purely atomic
measure, and P a contractive projection on X. Then there exists a vector
Samily {y,};c 4 of norm 1 with the disjoint supported subsets in X such that:
For each x€ X, P(x)=2;c4 ¥y¥(y;), where y¥ is the peak functional of y,
Jfor each 7 e A.

Using this theorem, we can show the following theorem.

THEOREM 2.2. Let (T, 2, n) be a purely atomic measure space and Y a
closed subspace of L, (1< p<oc, p#2). Then the following statements are
equivalent,

(a) Py is linear.
(b) There exists a disjoint subset family {A;},., of T such that

Y=[@,caM;]1,, where M, is either L,(A;) or a hyperplane of L,(A,) for
any A€ A.

Proof. (a)=(b). Let P=P, and Q =id— P. It is obvious that Q is a
contractive projection operator. By Theorem 2.1, there exists a vector
family {y,},. ., of norm 1 in L, in which the supported subsets supp(y;)
of y; are disjoint such that, for each xe L,

Ox=3 y¥(x)-ys, 1)

where y¥ is the peak functional of y, for each 1€ 4,. We can assume that
0¢ 4. Let A={0} U {iedy; card[supp(y;)]=>2}. Since for any xeL,
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and |x}i =1 the peak functional f of x is |x|?~ ' sgn(x}, we get supp{f}=
supp(x). So y¥e L, (supp(y;)) for any 2 e A Let Ao=T"U;c4,5UPP 5.}
and A4;=supp(y;) ).eA‘\_{O}. Let My=L,(A4,) and M,={xeL (4}
yHx)=0} 2e4:{0}. Then M, is a hyperplane of L (',-_) for each
e {0]. Forany xe L, let x, =x|,, (=x(t), te 4,; and =0, 1 ¢ 4;) for
each ~.€ A. Then ,\‘—Y,EA B} (2.1),

i)

Ox= 3 yHx;) v, 22)

sy

b~a
3%}
P

If xe Y, then Q‘C——O By (2.2), we get y¥(x,;)=0. If supp(y;)isa singleton,
fet supp(y;) = {#y}. Since y}(1)=x,(r)=0 when 1 # 1y, we have x,{#,) =0
by 0 = y}x;) = ulty) - 3F(to) - X,(fo) and p(ro) # 0, y¥ # 0. Hence
X=73;c4%X;. By y¥x;,)=0, we get xe [®,.,M;],, that is
Ye[®,eaM;], If x= Z,“ X; and x,eM;, by (\7 ) we get Qx=¢.
Hence xe Y, ie, [D;. . M;],=

The (b)=>(a) is the followmg theorems. |

TreOREM 2.3 (F. Deutsch [3]). Let Y be a proximinal hyperplane of a
Banach space X. Then P, admits a linear selection.

THEOREM 2.4 (Pei-Kee Lin [6]3). Suppose M, is a proximinal subspace
of X,, Py, has a linear selection s,. Then M={(@ M}, (1<p<x)isc
proximinal subspace of X ={(@® X,),. Moreover, P has a linear selection

@D s

3. THE LINEAR SELECTION IN L,

In this section, we consider the linear selections in L, space. We will need
to use the following theorems.

TueoreMm 3.1 (R. G. Douglas [5]). Let (T, 2, u) be a finite measure
space and P a contractive projection on L{T) and Pl,=1;, where
1r(tY=1 for any teT. Let Xy= {supp f; fe R(P)}. Then X, is a o-sudring
of 2 and Pf =0 if and only ifjAfd/,t =0 for each AeZ,.

Using this theorem, we can get the following theorem.
THEOREM 3.2.  Let (T, X, u) be a finite measure space and Y an

n-codimensional proximinal subspace of L \(T}. Then the foilowing statemeris
are equivalent

(1} Py admits a linear selection P such that Pl ,=0.
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(2) There exist measurable subsets A, A,, ..., A, such that
(@) AinA;=F (i#j)and J;_, A,=T.
(b) Y={feL(T); |, fdu=0,i=1,2,..,n}.

Proof. Tt is evident that if Y has the form in (b), then codim Y =n.

(1)=1(2). Let Q=id— P. Then Q is a contractive projection on L,
and Q1,=1;. Let 2= {supp x; xe€ R(Q)}. By Theorem 3.1,

Y={feL1;Lfdy=0for each AEZO}. (3.1)

Let A,, A,,.., A, be all atoms in X,. Since R(Q) is separable (finite
dimension), the subset To=u{supp x; xe€ R(Q)} is measurable. Let
D=Ty\UY_, Ax. Suppose u(D)>0. Since D does not contain any atoms;
there exist disjoint B, B,, ..., B, such that O<pu(B,)<u(D)/(n+1) and
B;e X,. Hence there exist y;e R(Q) such that supp(y;)= B,. It is obvious
that y,, ¥3, .., ¥, are linear independent. So dim R(Q)>rn. It is in
contradiction with the codim Y=n. So we get To=U7_, 4, and
Zo={A4,,4,5, .. 4,}. By (3.1), we get that Y has the form of (b) and
m=mn. If u(T\T,)>0, let f be the characteristic function. Then f# 0. But

(Lr=fll=] fdu=p(To)<u(T) =17

This is in contradiction with the P1,=0. So we can assume that T'= 1T
(up to a set of measure zero). Hence (a) holds.

(2)=(1). Let x, be the characteristic function of 4, and y,= x,/u(4,).
For any xe L,, let f;(x)={, xdu. Then f;e L}, |f:| =1, and f;(y;) =0,
where 6, is the Kronecker symbol. Since 4, 4;= & and T=);_, 4,, for
any xeL,, x=37%_, (x;x). Let xo=2>7_, [x,x— f,(x;x) y;]. It is obvious
that f;(xq)=0. So xoe Y. For any ye Y, by fi(x;y)=f:(y)=0,

[x—Xoll = X IfiCxix) yill = 3 1 £i (i)
k=1 k=1

n

=Y Ifilxix—xp)I < Y, xx—x;pl =Ilx—yl.

k=1 k=1

So xge Pyx. Let Px=x,. It is evident that P is a linear selection of P,.
We need only prove Pl,=0. By definition, P1,=37_, [x,— fi{x)y.]
Since fi(x;) y;=u(4,) y;=x;, P1;=0. |
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